Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2118, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440552

RESUMO

PIWI-interacting RNAs (piRNAs) are small RNAs required to recognize and silence transposable elements. The 5' ends of mature piRNAs are defined through cleavage of long precursor transcripts, primarily by Zucchini (Zuc). Zuc-dependent cleavage typically occurs immediately upstream of a uridine. However, Zuc lacks sequence preference in vitro, pointing towards additional unknown specificity factors. Here, we examine murine piRNAs and reveal a strong and specific enrichment of three sequences (UAA, UAG, UGA)-corresponding to stop codons-at piRNA 5' ends. Stop codon sequences are also enriched immediately after piRNA processing intermediates, reflecting their Zuc-dependent tail-to-head arrangement. Further analyses reveal that a Zuc in vivo cleavage preference at four sequences (UAA, UAG, UGA, UAC) promotes 5' end stop codons. This observation is conserved across mammals and possibly further. Our work provides new insights into Zuc-dependent cleavage and may point to a previously unrecognized connection between piRNA biogenesis and the translational machinery.


Assuntos
Proteínas de Drosophila , Animais , Códon de Terminação/genética , Proteínas de Drosophila/genética , Endorribonucleases/genética , Mamíferos/genética , Camundongos , RNA Interferente Pequeno/genética
2.
Elife ; 102021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236313

RESUMO

The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 min and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the embryonic soma to evade silencing in germ cells.


Maintaining the integrity of DNA, which encodes all of the instructions necessary for life, is essential for ensuring the survival of a species, especially when genetic information is transferred across generations. DNA, however, contains selfish, mobile elements, called transposons, that move around the genome, hence their nickname 'jumping genes'. Their movement, a process by which these elements also multiply within genomes, can muddle an organism's DNA if the transposon happens to land in the middle of a gene, creating a mutation which renders the gene inactive. Transposons have also been linked to the development of cancer, which is a group of diseases driven by accumulating genetic mutations. Animals have evolved various ways of protecting their DNA against transposons. These are especially important in developing egg cells and sperm, known collectively as germ cells. These cells can produce small fragments of RNA, a molecule similar to DNA, which are able to identify and disarm transposons. While it is known that these small RNAs effectively protect adult gonads from DNA damage, it has been unclear how germ cells formed during the beginning of life are protected. To find out more, Fabry et al. used a combination of genetic sequencing, protein binding and imaging studies to look at the activity of small RNAs, called piRNAs, which are passed on from the mother to her progeny. By studying the gene expression levels in fruit fly embryos, Fabry et al. showed that certain transposons become highly active in the first few hours of embryo development, posing a potential threat to DNA integrity. The experiments also identified clear signs in the embryos of an active mechanism for controlling transposons that resembles the small RNA system known from adult germ cells. Fabry et al. removed the piRNAs from the embryos and found that without piRNAs, transposons were more active. This indicates a direct role of these small RNAs in controlling transposons in early development and evidence for a maternally inherited defence system in early embryos. This study provides insights into the control of transposons in fly embryos. More research is needed to find out whether these embryonic mechanisms are conserved in other animals, including humans. Studying the intrinsic mechanisms that prevent DNA damage and protect our genome could, in time, help to identify new approaches to possibly treat and prevent diseases involving genetic mutations.


Assuntos
Drosophila/embriologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Heterocromatina/metabolismo , Herança Materna/genética , Herança Materna/fisiologia , RNA Interferente Pequeno/metabolismo , Animais , Cromatina , Elementos de DNA Transponíveis , Biologia do Desenvolvimento , Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Epigenômica , Feminino , Expressão Gênica , Células Germinativas/metabolismo , Histonas/metabolismo , Masculino
3.
Elife ; 102021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856346

RESUMO

The nuclear pore complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some Nups can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.


Transposons are genetic sequences, which, when active, can move around the genome and insert themselves into new locations. This can potentially disrupt the information required for cells to work properly: in reproductive organs, for example, transposon activity can lead to infertility. Many organisms therefore have cellular systems that keep transposons in check. Animal cells comprise two main compartments: the nucleus, which contains the genetic information, and the cytosol, where most chemical reactions necessary for life take place. Molecules continually move between nucleus and cytosol, much as people go in and out of a busy train station. The connecting 'doors' between the two compartments are called Nuclear Pore Complexes (NPCs), and their job is to ensure that each molecule passing through reaches its correct destination. Recent research shows that the individual proteins making up NPCs (called nucleoporins) may play other roles within the cell. In particular, genetic studies in fruit flies suggested that some nucleoporins help to control transposon activity within the ovary ­ but how they did this was still unclear. Munafò et al. therefore set out to determine if the nucleoporins were indeed actively silencing the transposons, or if this was just a side effect of altered nuclear-cytosolic transport. Experiments using cells grown from fruit fly ovaries revealed that depleting two specific nucleoporins, Nup54 and Nup58, re-activated transposons with minimal effects on most genes or the overall health of the cells. This suggests that Nup54 and Nup58 play a direct role in transposon silencing. Further, detailed analysis of gene expression in Nup54- and Nup58-lacking cells revealed that the product of one gene, flamenco, was indeed affected. Normally, flamenco acts as a 'master switch' to turn off transposons. Without Nup54 and Nup58, the molecule encoded by flamenco could not reach its dedicated location in the cytosol, and thus could not carry out its task. These results show that, far from being mere 'doorkeepers' for the nucleus, nucleoporins play important roles adapted to individual tissues in the body. Further research will help determine if the same is true for other organisms, and if these mechanisms can help understand human diseases.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Ovário/metabolismo , Interferência de RNA , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ovário/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Elife ; 102021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538693

RESUMO

In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dineínas/genética , Inativação Gênica , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo
5.
Genes Dev ; 33(17-18): 1208-1220, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416967

RESUMO

The PIWI-interacting RNA (piRNA) pathway is a conserved small RNA-based immune system that protects animal germ cell genomes from the harmful effects of transposon mobilization. In Drosophila ovaries, most piRNAs originate from dual-strand clusters, which generate piRNAs from both genomic strands. Dual-strand clusters use noncanonical transcription mechanisms. Although transcribed by RNA polymerase II, cluster transcripts lack splicing signatures and poly(A) tails. mRNA processing is important for general mRNA export mediated by nuclear export factor 1 (Nxf1). Although UAP56, a component of the transcription and export complex, has been implicated in piRNA precursor export, it remains unknown how dual-strand cluster transcripts are specifically targeted for piRNA biogenesis by export from the nucleus to cytoplasmic processing centers. Here we report that dual-strand cluster transcript export requires CG13741/Bootlegger and the Drosophila nuclear export factor family protein Nxf3. Bootlegger is specifically recruited to piRNA clusters and in turn brings Nxf3. We found that Nxf3 specifically binds to piRNA precursors and is essential for their export to piRNA biogenesis sites, a process that is critical for germline transposon silencing. Our data shed light on how dual-strand clusters compensate for a lack of canonical features of mature mRNAs to be specifically exported via Nxf3, ensuring proper piRNA production.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Precursores de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Elementos de DNA Transponíveis/genética , Drosophila/genética , Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a RNA/genética
6.
Elife ; 82019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31219034

RESUMO

The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing.


Assuntos
Inativação Gênica , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Cromatina/metabolismo , Drosophila melanogaster/genética , Ligação Proteica , Estabilidade Proteica
7.
Genes Dev ; 33(13-14): 844-856, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123065

RESUMO

The Piwi-interacting RNA (piRNA) pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. piRNA biogenesis requires a specialized machinery that converts long single-stranded precursors into small RNAs of ∼25-nucleotides in length. This process involves factors that operate in two different subcellular compartments: the nuage/Yb body and mitochondria. How these two sites communicate to achieve accurate substrate selection and efficient processing remains unclear. Here, we investigate a previously uncharacterized piRNA biogenesis factor, Daedalus (Daed), that is located on the outer mitochondrial membrane. Daed is essential for Zucchini-mediated piRNA production and the correct localization of the indispensable piRNA biogenesis factor Armitage (Armi). We found that Gasz and Daed interact with each other and likely provide a mitochondrial "anchoring platform" to ensure that Armi is held in place, proximal to Zucchini, during piRNA processing. Our data suggest that Armi initially identifies piRNA precursors in nuage/Yb bodies in a manner that depends on Piwi and then moves to mitochondria to present precursors to the mitochondrial biogenesis machinery. These results represent a significant step in understanding a critical aspect of transposon silencing; namely, how RNAs are chosen to instruct the piRNA machinery in the nature of its silencing targets.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , RNA Helicases/metabolismo , RNA Interferente Pequeno/biossíntese , Animais , Linhagem Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo
8.
Annu Rev Genet ; 52: 131-157, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30476449

RESUMO

PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.


Assuntos
Proteínas Argonautas/genética , Elementos de DNA Transponíveis/genética , RNA Interferente Pequeno/genética , Transcrição Gênica , Animais , Drosophila melanogaster/genética , Inativação Gênica , Gônadas/crescimento & desenvolvimento , RNA Interferente Pequeno/biossíntese
9.
Genes Dev ; 30(14): 1623-35, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474441

RESUMO

Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer.


Assuntos
Transformação Celular Neoplásica/patologia , Drosophila/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Elementos de DNA Transponíveis/genética , Drosophila/citologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Ovário/citologia , Transdução de Sinais/genética
10.
Cell ; 164(5): 838-40, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919421

RESUMO

For a decade, mystery has surrounded the mechanisms by which piRNA biogenesis yields distinct size classes of small RNAs within individual PIWI proteins. In this issue of Cell, two studies shed light on this process, identifying conserved PARN-family exonucleases that trim piRNAs to their mature size in silkworms and C. elegans.

11.
Trends Biochem Sci ; 41(4): 324-337, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26810602

RESUMO

The PIWI-interacting RNA (piRNA) pathway is a conserved defense mechanism that protects the genetic information of animal germ cells from the deleterious effects of molecular parasites, such as transposons. Discovered nearly a decade ago, this small RNA silencing system comprises PIWI-clade Argonaute proteins and their associated RNA-binding partners, the piRNAs. In this review, we highlight recent work that has advanced our understanding of how piRNAs preserve genome integrity across generations. We discuss the mechanism of piRNA biogenesis, give an overview of common themes as well as differences in piRNA-mediated silencing between species, and end by highlighting known and emerging functions of piRNAs.


Assuntos
Proteínas Argonautas/genética , Drosophila melanogaster/genética , Inativação Gênica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
12.
Cell Stem Cell ; 18(2): 276-90, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26669894

RESUMO

Complex regulatory networks regulate stem cell behavior and contributions to tissue growth, repair, and homeostasis. A full understanding of the networks controlling stem cell self-renewal and differentiation, however, has not yet been realized. To systematically dissect these networks and identify their components, we performed an unbiased, transcriptome-wide in vivo RNAi screen in female Drosophila germline stem cells (GSCs). Based on characterized cellular defects, we classified 646 identified genes into phenotypic and functional groups and unveiled a comprehensive set of networks regulating GSC maintenance, survival, and differentiation. This analysis revealed an unexpected role for ribosomal assembly factors in controlling stem cell cytokinesis. Moreover, our data show that the transition from self-renewal to differentiation relies on enhanced ribosome biogenesis accompanied by increased protein synthesis. Collectively, these results detail the extensive genetic networks that control stem cell homeostasis and highlight the intricate regulation of protein synthesis during differentiation.


Assuntos
Diferenciação Celular , Drosophila melanogaster/citologia , Células Germinativas/citologia , Biogênese de Organelas , Biossíntese de Proteínas , Ribossomos/metabolismo , Células-Tronco/citologia , Animais , Nucléolo Celular/patologia , Sobrevivência Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes de Insetos , Hipertrofia , Iniciação Traducional da Cadeia Peptídica/genética , Fenótipo , Ligação Proteica , Interferência de RNA , Transcriptoma/genética
13.
Science ; 350(6258): 339-42, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472911

RESUMO

The Piwi-interacting RNA (piRNA) pathway is a small RNA-based innate immune system that defends germ cell genomes against transposons. In Drosophila ovaries, the nuclear Piwi protein is required for transcriptional silencing of transposons, though the precise mechanisms by which this occurs are unknown. Here we show that the CG9754 protein is a component of Piwi complexes that functions downstream of Piwi and its binding partner, Asterix, in transcriptional silencing. Enforced tethering of CG9754 to nascent messenger RNA transcripts causes cotranscriptional silencing of the source locus and the deposition of repressive chromatin marks. We have named CG9754 "Panoramix," and we propose that this protein could act as an adaptor, scaffolding interactions between the piRNA pathway and the general silencing machinery that it recruits to enforce transcriptional repression.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Inativação Gênica , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Transcrição Gênica
14.
Genetics ; 201(3): 843-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26320097

RESUMO

To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China).


Assuntos
Drosophila/genética , Interferência de RNA , Acesso à Informação , Animais , Animais Geneticamente Modificados , Pesquisa Biomédica , Boston , Genes de Insetos , Vetores Genéticos , Faculdades de Medicina
15.
Nat Cell Biol ; 17(5): 689-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915123

RESUMO

The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oócitos/enzimologia , Fosforilação Oxidativa , Animais , Animais Geneticamente Modificados , Linhagem Celular , Bases de Dados Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Genótipo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , Oócitos/ultraestrutura , Fenótipo , Multimerização Proteica , Interferência de RNA , Transdução de Sinais , Transfecção , Regulação para Cima
16.
Methods Mol Biol ; 1093: 195-208, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24178567

RESUMO

Since their discovery about 20 years ago, small RNAs have been shown to play a critical role in a myriad of biological processes. The greater availability of high-throughput sequencing has been invaluable to furthering our understanding of small RNAs as regulatory molecules. In particular, these sequencing technologies have been crucial in understanding the role of small RNAs in reproductive tissues, where millions of individual sequences are generated. In this context, high-throughput sequencing provides the requisite level of resolution that other procedures, like northern blotting, would not be able to achieve. Here, we describe a protocol for the preparation of small RNA libraries for sequencing using the Solexa/Illumina technology.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Clonagem Molecular , DNA Complementar/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Reação em Cadeia da Polimerase , Pequeno RNA não Traduzido/isolamento & purificação , Pequeno RNA não Traduzido/metabolismo , Transcrição Reversa
17.
Mol Cell ; 50(5): 749-61, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23665227

RESUMO

The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two interrelated branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborate pathway centered on the three gonad-specific Argonaute proteins (Piwi, Aubergine, and Argonaute 3). While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals key factors of piRNA-mediated transposon silencing, including the piRNA biogenesis factors CG2183 (GASZ) and Deadlock. Our data uncover a previously unanticipated set of factors preferentially required for repression of different transposon types.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Perfilação da Expressão Gênica/métodos , Ovário/fisiologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Inativação Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes
18.
RNA ; 18(8): 1446-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22753781

RESUMO

In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fertilidade/genética , Inativação Gênica , Ovário/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Imunofluorescência , Masculino , Ovário/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
19.
Nature ; 485(7400): 605-10, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22660319

RESUMO

Adult stem cells support tissue homeostasis and repair throughout the life of an individual. During ageing, numerous intrinsic and extrinsic changes occur that result in altered stem-cell behaviour and reduced tissue maintenance and regeneration. In the Drosophila testis, ageing results in a marked decrease in the self-renewal factor Unpaired (Upd), leading to a concomitant loss of germline stem cells. Here we demonstrate that IGF-II messenger RNA binding protein (Imp) counteracts endogenous small interfering RNAs to stabilize upd (also known as os) RNA. However, similar to upd, Imp expression decreases in the hub cells of older males, which is due to the targeting of Imp by the heterochronic microRNA let-7. In the absence of Imp, upd mRNA therefore becomes unprotected and susceptible to degradation. Understanding the mechanistic basis for ageing-related changes in stem-cell behaviour will lead to the development of strategies to treat age-onset diseases and facilitate stem-cell-based therapies in older individuals.


Assuntos
Senescência Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Nicho de Células-Tronco/fisiologia , Testículo/citologia , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Especificidade de Órgãos , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Ribonuclease III/metabolismo , Nicho de Células-Tronco/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
RNA ; 18(1): 42-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096018

RESUMO

In animals a discrete class of small RNAs, the piwi-interacting RNAs (piRNAs), guard germ cell genomes against the activity of mobile genetic elements. piRNAs are generated, via an unknown mechanism, from apparently single-stranded precursors that arise from discrete genomic loci, termed piRNA clusters. Presently, little is known about the signals that distinguish a locus as a source of piRNAs. It is also unknown how individual piRNAs are selected from long precursor transcripts. To address these questions, we inserted new artificial sequence information into piRNA clusters and introduced these marked clusters as transgenes into heterologous genomic positions in mice and flies. Profiling of piRNA from transgenic animals demonstrated that artificial sequences were incorporated into the piRNA repertoire. Transgenic piRNA clusters are functional in non-native genomic contexts in both mice and flies, indicating that the signals that define piRNA generative loci must lie within the clusters themselves rather than being implicit in their genomic position. Comparison of transgenic animals that carry insertions of the same artificial sequence into different ectopic piRNA-generating loci showed that both local and long-range sequence environments inform the generation of individual piRNAs from precursor transcripts.


Assuntos
Drosophila melanogaster/metabolismo , RNA Interferente Pequeno/biossíntese , Animais , Drosophila melanogaster/genética , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...